
to an intermediate one and disappears entirely in the free-molecular mode. This is con- 
firmed by a comparative analysis of experimental data on isothermal Poiseuille flow and 
thermomolecular pressure. 

NOTATION 

Here NKn is the Knudsen number; y, the universal exponent of thermomolecular pressure; 
Ro, the radius of a cylindrical capillary; P, the pressure; T, the temperature, v, the log- 
arithmic pressure gradient; T, the logarithmic temperature gradient; U, the macroscopic gas 
velocity; q,. the thermal flux density; R, the gas rarefaction index; l, the length of the 
mean free path; IN, the numerical mean-over-the-section gas flux; lq, the mean-over-the- 
section thermal flux; and ~, the tangential-momentum accon~nodation coefficient. 
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MEASUREMENT OF NONSTATIONARY HEAT FLUXES BY 

"AUXILIARY WALL" SENSORS 

G. N. Dul'nev, V. I. Zavgorodnii, 
V. A. Kuz'min, and N. V. Pilipenko 

UDC 536.24.083 

Computational dependences are obtained to determine the nonstationary heat flux 
by using sensors executing the method of an auxiliary wall. The dependences are 
valid for an arbitrary relationship between the thermophysical properties of the 
sensor and the object on which it is located. 

The peculiarities of measuring nonstationary heat fluxes by heat meters executing the 
method of an auxiliary wall are considered in [I]. A number of dependences is presented to 
determine the flux q(T) of heat meters located on the surface of a semi-infinite body for 
particular values of the thermophysical properties of the heat meter and the base, defined 
by the magnitude of the criterion x = (%2/%z) (~al/a=) = O; 1.0; =. A solution of the prob- 
lem is presented below for any values of ~. As in [I], the model of the heat meter is rep- 
resented in the form of a plate located on a half-space (sketch). The temperature fields of 
the heat meter t1(x, T) and the base t2(x, T) are described by the equations 

_ _  ( ( i )  Oft = a ~  , i = 1 ; 2 .  

Leningrad  I n s t i t u t e  of P r e c i s i o n  Mechanics and Opt ics .  T r a n s l a t e d  from Inzhenerno-  
F i z i c h e s k i i  Zhurna l ,  Vol. 37, No. 1, pp. 99-103, J u l y ,  1979. O r i g i n a l  a r t i c l e  Submitted 
J u l y  4, 1978. 
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Fig. 1. 

. 2 

~(~) 

Model of a heat meter on a half-space. 

The surface x = --~ absorbs the heat flux 

Ot~ , (2) 
q (~) = --~, ~ . = _ ~  

whose magnitude must be determined. Other boundary conditions have the following form: 

OxOt2 x' = 0  ' or t21.+~ =const, (3) 

Oti I Ot2 tlI.=o = tZlx=o, 
X ~ x = o  = ~ ax .=o'  

t~[~=0 = tw, i =  1; 2 .  

Let us note that the following are assumed in formulating and solving the problem: the 
thermophysical properties are independent of the temperature and an ideal thermal contact 
holds between bodies | and 2. 

The solution of the problem formulated in the form of transforms can be written as 

he (s) = gq (s) Q (s), 

from which the t r ans fo rm of the  d e s i r e d  f l u x  i s  

1 Q (~ = 

Analyzing (6) it is easy to show that ]/Yq(s) 
manipulations presented in [I] are necessary. 

Consequently, 
of the expression 

(4) 

+ •  - - 6 - - 1  
a~ (5) 

�9 AO (s), (6) 

is of the order of r and hence, additional 

it is established that the form of the function@(~) which is the original 

1 ~,, sh A ] / s  § • ] / s  (7) F (s) . . . .  
seq (s) V-~ Ks(• sh A V s +  ch A V s - -  l )  ' 

a = V--7'  = l /  a ,  F a2 

must be found to s o l v e  the  problem. 

Fur the rmore ,  to de te rmine  the  f l u x ,  the  dependence can be used [1]:  
T 

f d tAt (~)] d~. (8) 

0 

The d e r i v a t i v e  of  the  t empera tu re  drop,  which can r e s u l t  in  s u b s t a n t i a l  e r r o r s  in  a p r a c t i c a l  
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is in the integrand. It is hence expedient to 
so as to avoid the derivative d[At]/d~. To do this we integrate 

determination from tests ina number of cases, 
convert the dependence (8) 
by parts 

q(T) = ~(x) At (~) - -  ~ tat  ~) - -  At (x)l d~ (Xd~ - ~ )  d~. (8a)  

0 

In  c o n t r a s t  to  [ 1 ] ,  e x p r e s s i o n s  a r e  o b t a i n e d  h e r e  f o r  the  f u n c t i o n  ~O(~) f o r  a r b i t r a r y  
v a l u e s  of  the  p a r a m e t e r  1~ in  the  g e n e r a l  c a s e .  

Le t  us f i n d  the  o r i g i n a l  ~O(~) f o r  ( 7 ) ;  to  do t h i s  we r e p r e s e n t  F ( s )  as the  sum of  two 
components 

F (s) = 1 Xt sh A V ~  ~ • ch A I/-~ 
sY~(------~ = V----~ V " s - ( •  q" "-- (9) ~/a, / s ( •  chA l / s - -  1) 

A f t e r  expand ing  t h e  v a l u e s  o f  t h e  h y p e r b o l i c  f u n c t i o n s  and s i m p l e  m a n i p u l a t i o n ,  t he  
first component can be written in the form 

sh A V ;  

L e t  us u se  the  e x p a n s i o n  [2] 

I 

1 + m exp (--A V~) 

Xi _ _ 1  1 + exp(_Avr~)  (lO) 
= ~/a~---s x + 1 1 + • - -  I exp { - - A / s )  

x + l  

.~_ (--I)" exp (--nA~s) rn"; 

m = - -  
•  

and put (I0) in the form 

)~ sh A #'s- ~ l 1 + exp (--A r (_1). exp (__nAvrs) _ _ ]  . 
/a-, /~-(,~ sh A / s +  ch A / ~ -  1) = / ~  ~ + I Ks . = o  

Proceeding analogously with the second component in (9), we obtain 

Xt • ch A ~ / s  ~ • 

/ ~ s  (• sh A / s +  ch A v '~ - -  I) -- u (x + I) 

n=0 n=0 

(11) 

. . ( E exp(--nA/~E(--l)~exp(--nAvr~ x+l~--I 
n~O n=0 

Substituting the values of (12) and (13) 
we obtain 

(12) 

(13) 

- ) ]  
E ( X --  + [ 1 - -  e x p ( - - A  V~)I ( - - 1 ) . e x p ( - - n A t / - s )  •  1 . 

x +  1) x- t -  1 ~-0 

I t  can  be  shown t h a t  t h e  p r o d u c t  o f  the  sums i n  the  r i g h t  s i d e  of  (13) i s  r e d u c e d  to  the  
form [5] 

into (9) and performing simple manipulations, 

--) ' } .  
(15) 

F(s)  = l /~ l s  (x + 1) _ 

--exp(--At/-s)l ] (--1)nexp(--nA1/s) ( ~ -  + l )"  

n 

~=o x +  1 

826 



We find the original of the function F(s) after performing an inverse Laplace transfor- 
mation. We consequently obtain 

L -i [F (s)] = ~ (~) = ~ nalz (• q- I) (I q- • 
n=0 

.•  exp 4"~ • + 1 (--1)n(1 ~•  • 1 ' 

n 

exp - . 
•  I 4z 

k = O  

Let us s u b s t i t u t e  the va lue  of ~O(T) in to  (8a) and perform the necessa ry  man ipu la t ions ,  
and a f t e r  s i m p l i f i c a t i o n  we ob t a in  a computa t iona l  dependence to de te rmine  the f lux  d e s i r e d  

~I~ "~ (--1)~(• 1) exp 
q('r)= 1~naG(• ~ • 1 ~ } 

+[(--I)"(I--• • )" ~ ( - -1  ) k] 
•  1 + 2 •  (_l)k x___.__• 

k-----O 

X exp 4"r 41/rua--~t (• + I) , 
0 

x ~/(~_g)~ ( - - 1 ) " 0 + •  •  ~ = •  

x e x p [  n2A2 ]§ [ ( "  •  ) n 
4 (-~-~--- ~_) J L (--1)" (1--  • \ • + t  

q- 2• ~h=o (--1)h ' • "+- 1 [(n + 1)2A~ --  2 ('r-- ~)] exp ~ d~. (17) 

Verification of (17) for passages to the limit (~= 1, ~= 0, co) resulted in the compu- 
tational relationships obtained in [I]. 

To estimate the applicability of the dependence (17) to compute the nonstationary flux 
q(T), a program was compiled for the ES 1020 elec,tronic computer, and the results of experi- 
ments performed on the test stand whose construction is described in [3] were processed. Let 
us note that the test stand permits both giving nonstationary fluxes varying according to 
different laws known to the experimenter, and measuring them by using different heat meters. 
The experimental test-stand investigations exhibited good reproducibility of the results (the 
error does not exceed 5%). 

An "auxiliary wall" heat meter of the type DTP-02, developed in the Institute of Engi- 
neering Thermophysics of the Ukrainian of Science [4], was used as sensor. The heat 
meter was located on a bulky copper plate (~35). The heat flux incident on the sensor 
varied linearly between 0 and 5"I02 W/m 2 at the rates dq/dT = 20-35 W/m2.sec. It was estab- 
lished as a result of the investigations that the maximum discrepancy between the fluxes 
given by using the test stand and those measured by the heat meter with a subsequent compu- 
tation by means of (17) does not exceed 8%. The computation time on the ES I020 electronic 
computer does not exceed several minutes. 

Therefore, to measure the nonstationary heat fluxes by using "auxiliary wall" heat 
meters fastened to a semi-infinite_ body, the thermophysical properties of the heat meter and 
the semi-infinitebody (~m(%2/%a)#a~/a2)aswell as the temperature drop at different times, 
must be known. 

NOTATION 

%1, al, thermal conductivity and thermal diffusivity of the heat meter; %2, a2, the 
same for the base; q(T), heat flux density; T, time; t1(x, T), t2(x, T), temperature of the 
heat meter and the base; 6, thickness of the heat meter; x, running coordinate; At(T), 
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temperature drop over the heat meter thickness; Q(s), A0(s), Laplace transforms of the heat 
flux q(T) and the temperature drop At(T); s, Laplace transform parameter; Yq(s) transfer func- 
tion from the heat flux to the temperature drop. 
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DISPERSION OF THE DIELECTRIC PERMITTIVITY IN MIXTURES 

OF NEMATIC LIQUID CRYSTALS 

A. G. Shashkov, I. P. Zhuk, 
and L. E. Golovicher 

UDC 532.783:548.0:537.226 

The spectrum of relaxation time for the low-frequency dispersion has been found 
to become wider in mixtures of nematic liquid crystals, which can be interpreted 
as a superposition of two Debye relaxation mechanisms. 

The dielectric properties of uniformly oriented nematic liquid crystals are determined 
in terms of two principal values of the dielectric permittivity 81land 8i, corresponding to 
measurements respectively along and across the axis of nematic order [I]. 

In single-component nematic liquid crystals at superhigh frequencies (hundreds of mega- 
hertz) 8, and ~• have a range of Debye dispersion with relaxation times (~l and ~• respec- 
tively) closeto thosein an isotropic liquid (Tis) [2]. At low frequencies (hundreds of kilo- 
hertz) BE; has an additional range of dispersion [3]. One associates the low-frequency range 
of dispersion with rotation of molecules about their short axes, this rotation being greatly 
inhibited by the nematic order, and the high-frequency range of dispersion with rotation of 
molecules about their long axes. The latter rotation differs insignificantly little from 
analogous rotation in the isotropic phase. 

In a multicomponent system of nematic liquid crystals the pattern of dipole relaxation 
can be much more complex. 

The object of this study was to experimentally analyze the dispersion of the dielectric 
permittivity in mixtures of nematic liquid crystals. 

The compounds dealt with in this study are listed in Table I. 

Experimental. The dielectric characteristics were measured over the 0.I-I0 MHz fre- 
quency range by the resonance method with a set of "Tangens-2M" instruments. The test cell 
consisted of a capacitor with plane-parallel silver plates with the gap between them not 
exceeding 2.5 nun. The capacitance with air between the plates was 3.2 pF. The measurement 
error did not exceed 0.6 and 7% for E' and e" respectively. A uniform orientation of the 
nematic liquid crystals was achieved by means of a constant magnetic field of 6 kG strength. 
The temperature was maintained accurately within •176 More details about the experimental 
apparatus and procedure can be found in the earlier reports [4,5]. 

Results. The frequency dependence of the dielectric characteristics ( 8 u and ~• was 
determined from measurements at discrete frequencies 0.], 0.2, 0.5, ].l, 2, 5, ]0 MHz. Their 
temperature dependence was studied in the mesophase and in the isotropic-liquid phase. 
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